Search About RLL About Mattick About Supplement Add to Supplement PDF file providers Help

Full record view

Concostrina-Zubiri, L./ E. Huber-Sannwald/ I. Martínez/ J. L. Flores Flores/ A. Escudero 2013: Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. - Soil Biology and Biochemistry 64: 28-36. [RLL List # 232 / Rec.# 34867]
Keywords: Biological soil crusts/ Cyanobacteria/ Disturbance gradient/ Grazing/ Lichen/ Moss/ Semiarid grassland/ Soil heterogeneity
Abstract: Morphological and physiological characteristics of biological soil crusts (BSCs) enhance soil stability and fertility, and influence soil chemistry. However, the effect of BSCs on soil physico-chemical properties may vary depending on taxa (cyanobacteria, lichen, bryophytes) and species, and be susceptible to soil surface disturbance. We examined a wide variety of soil physico-chemical properties associated with five BSC components (cyanobacteria crust, one moss species, three lichen species) naturally occurring in the study area, and bare soil along a disturbance gradient in a semiarid grassland ecosystem in Central Mexico. We addressed the following questions: 1) Do different BSC components create distinct soil microsites characterized by a particular combination of physico-chemical properties? 2) Do distinct soil properties change beneath different BSC components? 3) Does grazing disturbance modify or override species-specific BSC effects? We found that BSC components and bare soil generated distinct soil microsites, however, this effect diminished with increasing grazing pressure. Also, most of the soil variables examined differed between BSC components and bare soil along the gradient. While soil properties associated with cyanobacteria were relatively similar compared to bare soil along the gradient, Diploschistes diacapsis and Lecidella sp. showed decreases in pH and marked differences in mineral nutrient concentration (i.e. variations in Na, Fe and Zn concentration respect to other BSC components and bare soil). Grazing intensity and frequency changed species-specific effects of D.diacapsis, specially modifying its effect on soil texture, diminishing its effect on pH, K and Na concentration, and increasing its effect on Ca and Zn concentration. We conclude that BSC components contribute to natural small-scale soil heterogeneity, and that soil disturbance substantially modifies the nature and magnitude of this effect with potentially important implications on ecosystem processes. Because of the potential influence of other factors (i.e. climate, vascular plants, microbial activity) on BSCs' relation to soil properties, this assertion should be tested including these factors and in multiple ecosystems. © 2013 Elsevier Ltd.

URL: http://dx.doi.org/10.1016/j.soilbio.2013.03.029

[Email correction]


Upload PDF file to the RLL web site

If you have a PDF file of this RLL/Mattic record, and there are no copyright problems involved, you may upload the file to the RLL/Mattick site. The PDF file will be automatically linked to the paper, and available for download by everyone. Only one PDF file can be linked to a paper, any previous link will be lost.

PDF file::
NB! Legal characters: a-z, A-Z, 0-9, hyphen, underscore, dot (i.e. no diacritics, ampersand, space, etc.).

  


Upload URL to PDF file or web site

Alternatively, you can link this RLL/Mattick record to a PDF file or web page placed somewhere else on the web. Again, only a single link can exist for each record; any previous link will be lost.

Copy and paste the URL you wish to link to this record: